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Abstract. We study the electrodynamic process in which a photon is emitted together with an e−–e+ pair
in the presence of a strong slowly rotating magnetic field. In particular, the spectrum of photons produced
in this way is calculated starting from an effective Lagrangian that allows at tree level for the process
itself. The magnetic field strengths we have in mind are ∼ 1014 G in such a way that, although our model
is an oversimplified version of the real physical situation, the results can be applied only in some particular
astrophysical scenarios (magnetars, massive black holes).

1 Introduction

There is today much indirect evidence that overcritical
[� Bcr = m2c3/(�e) � 4.4 × 1013 G] magnetic fields may
be present around very highly magnetized and rotating
neutron stars called magnetars [1–3]. Also, numerical simu-
lations predict that around massive black holes surrounded
by an accretion disk such strong magnetic fields may be
present too [4]. For these reasons, studying the electro-
dynamic processes that can occur in the presence of such
strong fields is not a purely theoretical exercise but it can
checked by (at least indirect) experimental observations. In
the present paper we want to study the production of a pho-
ton together with an e−–e+ pair in the presence of a strong
slowly rotating magnetic field. This work follows other pa-
pers where the production of electrons, positrons [5–7] and
photons [8] in the presence of strong slowly varying mag-
netic fields in various configurations has been studied. In
particular, in [8] the spectrum was obtained of the photons
produced after the annihilation of e−–e+ pairs previously
created in a strong slowly rotating magnetic field. In the
present work we want to calculate the spectrum of the pho-
tons emitted through a different mechanism. In fact, it is
well known that an electron or a positron in the presence of
a constant and uniform magnetic field can emit photons as
synchrotron radiation [9]. Nevertheless, as we have said be-
fore, the process we want to consider here is quite different.
In fact, we want to study the whole process consisting both
in the creation of an e−–e+ pair and in the electromagnetic
emission of a photon by one of the particles making the pair.
In particular, it is worth pointing out that the creation of
the pair is possible only because of the time variation of the
background magnetic field and of the consequent presence
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of an induced electric field [10]. In this respect, the time
variation of the magnetic field is an essential ingredient of
the calculation and distinguishes it from the others already
done in the literature [see e.g. [11] and references therein
or the less recent review [12]]. Incidentally, the case of a
rotating magnetic field is relevant because the production
of e−–e+ pairs (and then of photons) is much more effi-
cient than the production in the presence of a magnetic
field varying only in strength [7]. Moreover, this particular
time evolution makes the mathematical treatment of the
problem easier.

Apart from its own relevance, a possible application of
these calculations is the study of the spectrum of gamma-
ray bursts [13]. Although the standard fireball model [14]
explains many features of gamma-ray bursts such as the
general form of the energy spectra or the fact that the pho-
ton radiation is highly polarized [15], the mechanism that
primes the formation of the fireball (made essentially of
electrons, positrons and photons) is not completely clear.
Nevertheless, it seems almost sure that the fireball is pro-
duced near forming neutron stars or black holes surrounded
by a rotating torus of debris as a consequence of a catas-
trophic event such as a supernova explosion [16]. Now, we
are aware that the theoretical framework in which our cal-
culations are carried out is a very simplified version of the
real astrophysical scenario where gamma-ray bursts are
produced. In particular, many macroscopic and collective
aspects that are present in the real physical environment
have been neglected. From this point of view, our model
has to be considered as a “toy model” that tries to re-
produce qualitatively some experimental features of the
very complicated phenomenon of gamma-ray bursts and,
in particular, of their energy spectra. Concerning the appli-
cability of the following calculations to gamma-ray bursts,
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another word of caution must be said. In fact, a gamma-ray
burst is produced in a region where the local densities of
electrons (positrons) are very high (there are ∼ 1054 of
these particles in a volume with typical length ∼ 106 cm).
In these extreme conditions the probability that the pho-
tons emitted through the mechanism at hand reach directly
an observer at infinity may be low. In fact, it is likely that
they interact with the existing electrons and positrons in
such a way that the photon spectrum seen at infinity could
be different from that calculated here (see Sect. 3).

The plan of this paper is given below. Our theoret-
ical starting point is the Lagrangian density of QED in
the presence of an external rotating magnetic field. The
fact that the magnetic field is purely rotating allows us
to build an effective time-independent Lagrangian density
that takes into account the rotation of the external field
through additional interaction terms proportional to the
rotational frequency of the magnetic field (Sect. 2). In this
way, since, as we will see, the magnetic field can be assumed
to be slowly rotating, the ordinary perturbation theory has
been used to calculate the spectrum of the emitted photons
(Sect. 3). As we conclude in Sect. 4, although the simplicity
of our theoretical model with respect to the real physical
situation, qualitative features of experimental spectra of
gamma-ray bursts are reproduced such as the linear de-
pendence on the inverse of the photon energy in the low
energy region or the presence of a “break” energy around
which the spectrum shows two different behaviors.

To conclude this Introduction we want to mention some
notational points: the signature of theMinkowski spacetime
is assumed to be +−−− and, while Greek indices run from
0 to 3, Latin ones run from 1 to 3. Finally, as usual, natural
units (� = c = 1) are used throughout.

2 Theoretical model

The process to be studied concerns the production of elec-
trons, positrons and photons in the presence of a strong
rotating background magnetic field. A good theoretical
starting point is the Lagrangian density L(ψ, ∂µψ, ψ̄, A(r)

µ ,
∂νA

(r)
µ , r, t) of QED in the presence of an external electro-

magnetic field. If Aµ(r, t) is the four-potential describing
the external electromagnetic field, then

L(ψ, ∂µψ, ψ̄, A(r)
µ , ∂νA

(r)
µ , r, t)

= ψ̄(r, t)
{
γµ
[
i∂µ + eAµ(r, t) + eA(r)

µ (r, t)
]

−m
}
ψ(r, t)

− 1
4
F (r)
µν (r, t)F (r)µν(r, t) (1)

where the radiation field

A(r)
µ (r, t) =

[
ϕ(r)(r, t),−A(r)(r, t)

]
is assumed in the Coulomb gauge

ϕ(r)(r, t) = 0, (2)

∇ · A(r)(r, t) = 0, (3)

and where

F (r)
µν (r, t) = ∂µA

(r)
ν (r, t) − ∂νA

(r)
µ (r, t). (4)

In (1) the two terms proportional to Fµν(r, t)Fµν(r, t)
and to Fµν(r, t)F (r)µν(r, t) with Fµν(r, t) = ∂µAν(r, t) −
∂νAµ(r, t) have been omitted because they do not give
any significant contribution to the equations of motion of
the fields ψ(r, t) and A(r)

µ (r, t) and to the process we want
to study.

In our case the external electromagnetic field is the
magnetic field created by an astrophysical compact object
and it can be safely assumed to be uniform in the micro-
scopical length scale (of the order of λc− = 1/m) in which
an e−–e+ pair is created1. Finally, if we also assume the
magnetic field B(t) to be static before t = 0 and purely
rotating in the y–z plane after t = 0 it can be written as

B(t) =
{
B (0, sinΩt, cosΩt) if t ≥ 0,
B (0, 0, 1) if t < 0,

(5)

and the four-potential Aµ(r, t) can be chosen in the form
Aµ(r, t) = [0,−A(r, t)] with

A(r, t) = − 1
2

[r × B(t)] . (6)

We pointed out in (5) that the magnetic field is static be-
fore an arbitrary time set equal to zero.2 The fact that
the magnetic field has always strength B for times t < 0
must be clarified because a sudden appearance of the mag-
netic field would imply huge induction effects. Actually,
from a theoretical point of view, we tacitly assume that at
very large times in the past the magnetic field grew adi-
abatically from zero to B without changing its direction.
Now, also in this phase there is a production of particles
(electrons, positron and photons) but, as we have checked
in [7], a changing-direction magnetic field primes much
more efficient pair-production mechanisms than a mag-
netic field changing only in strength [in general the pro-
duction probabilities in the first case are (B/Bcr)3/2 � 1
times the corresponding probabilities in the second one].
In this framework, we have tacitly assumed that we could
neglect the presence of the particles created in this phase
with respect to those that will be created at t ≥ 0 as a
consequence of the rotation of the magnetic field. In partic-
ular, in the astrophysical environment we sketched in the
Introduction the instant zero could represent, for example,
the time when the supernova explosion begins.

Now, the Lagrangian density (1) is not in the most suit-
able form for the physical scenario we want to describe.
In fact, as it stands it would be suitable for dealing with
a weak external magnetic field because the usual pertur-
bation theory could be used, while, as we have said in the

1 Since in the present paper we also deal with photons, we
point out that the previous assumption about the uniformity
of the magnetic field is valid only for photons with energy ω
such that Ω � ω [8].

2 It can be shown that a purely rotating magnetic field from
−∞ to ∞ would not give any particle production.
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Introduction, we are dealing with a strong magnetic field.
Nevertheless, we also know that the temporal evolution
scale of the macroscopic magnetic field (5) can be assumed
to be much larger than that of the typical times in which
the electrons and positrons are created, that is,Ω � m [7].
For this reason, in the following, our goal is to manipu-
late the Lagrangian density (1) in order to write it in a
form that allows us to exploit the “adiabatic” temporal
evolution of the magnetic field (5)3. Firstly, we perform
the time-depending rotation

r′ ≡ (x′, y′, z′) (7)

= (x, y cosΩt− z sinΩt, y sinΩt+ z cosΩt),

where, for later notational simplicity, we have not indicated
the dependence of the variables r′ on t. As a consequence,
the spinor field ψ(r, t) and the four-vector field A(r)(r, t) =
[A(r)0(r, t), . . . , A(r)3(r, t)] transform as

ψ′(r′, t) = exp
(
−i
σx
2
Ωt
)
ψ(r, t), (8)

A(r)′(r′, t) = exp (−iSxΩt)A(r)(r, t), (9)

where the matrices σx and Sx are given by

σx =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , Sx =




0 0 0 0
0 0 0 0
0 0 0 i
0 0 −i 0


 . (10)

We point out that, although σx and Sx are two (4 × 4)
matrices, they act on two different spaces: the first one
acts on the spinor space and the second one acts on the
four-vector space labeled by the Lorentz indices {0, . . . , 3}.

The current density j(r, t) = ψ̄(r, t)γψ(r, t) with γ ≡
(γ0, . . . , γ3) transforms under the rotation (7) as a four-
vector; then [see (9)]

j(r, t) = exp (iSxΩt) j′(r′, t), (11)

with j′(r′, t) = ψ̄′(r′, t)γψ′(r′, t). These previous equations
can be exploited to rewrite the Lagrangian density (1) in
terms of the primed variables and fields. In particular, it
is evident from (9) and (11) that

ψ̄(r, t)γµψ(r, t)A(r)
µ (r, t) = ψ̄′(r′, t)γµψ′(r′, t)A(r)′

µ (r′, t).
(12)

The transformation of the terms involving the external
magnetic field are more complicated. In fact, from (5)
and (6) we obtain

ψ̄(r, t)γµψ(r, t)Aµ(r, t)

= ψ̄′(r′, t)γ1ψ′(r′, t)

× 1
2

[(y′ cosΩt+ z′ sinΩt)B cosΩt

3 Analogously to what we have said in the note 1, we also
tacitly agree to restrict our attention to photons with energy
ω such that Ω � ω and only with this further assumption we
are allowed to consider as adiabatic the time evolution of B(t).

−(z′ cosΩt− y′ sinΩt)B sinΩt]

+ψ̄′(r′, t)
(
γ2 cosΩt+ γ3 sinΩt

)
ψ′(r′, t)

× 1
2

(−x′)B cosΩt

+ψ̄′(r′, t)
(
γ3 cosΩt− γ2 sinΩt

)
ψ′(r′, t)

1
2
x′B sinΩt

= ψ̄′(r′, t)γµψ′(r′, t)A′
µ(r

′), (13)

where we introduced the four-potential A′
µ(r

′) =
[0,−A′(r′)] with

A′(r′) = − 1
2

(r′ × B′) (14)

the vector potential corresponding to the static magnetic
field B′ = (0, 0, B).

Now, we want to see how the terms containing deriva-
tives of the fields in the Lagrangian density (1) trans-
form. We first transform separately the time derivatives
∂ψ(r, t)/∂t and ∂A(r)(r, t)/∂t. From (8) and (9) and by
recalling that the variables r′ actually depend on time
[see (7)], we have

∂ψ(r, t)
∂t

(15)

= exp
(
i
σx
2
Ωt
)[

iΩJ (1/2)′
x ψ′(r′, t) +

∂ψ′(r′, t)
∂t

]
,

∂A(r)(r, t)
∂t

(16)

= exp (iSxΩt)
[
iΩJ (1)′

x A(r)′(r′, t) +
∂A(r)′(r′, t)

∂t

]
,

where we introduced the one-particle total angular mo-
mentum operators

J (1/2)′
x =

1
i

(
y′ ∂
∂z′ − z′ ∂

∂y′

)
+
σx
2
, (17)

J (1)′
x =

1
i

(
y′ ∂
∂z′ − z′ ∂

∂y′

)
+ Sx. (18)

By means of (15) and (16) it can be seen that

ψ̄(r, t)γµ∂µψ(r, t)

= ψ̄′(r′, t) exp
(
−i
σx
2
Ωt
)
γ0∂0

[
exp

(
i
σx
2
Ωt
)
ψ′(r′, t)

]
+ψ̄′(r′, t)γ1∂′

1ψ
′(r′, t)

+ψ̄′(r′, t)
(
γ2 cosΩt+ γ3 sinΩt

)
× (cosΩt ∂′

2 + sinΩt ∂′
3)ψ

′(r′, t)

+ψ̄′(r′, t)
(−γ2 sinΩt+ γ3 cosΩt

)
× (− sinΩt ∂′

2 + cosΩt ∂′
3)ψ

′(r′, t)

= ψ̄′(r′, t)γµ∂′
µψ

′(r′, t)

+iΩψ̄′(r′, t)γ0J (1/2)′
x ψ′(r′, t), (19)
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and that

− 1
4
F (r)
µν (r, t)F (r)µν(r, t)

= − 1
4
F (r)′
µν (r′, t)F (r)′µν(r′, t)

−iΩ
∂A

(r)′
µ (r′, t)
∂t

J (1)′
x A(r)′µ(r′, t) +O(Ω2), (20)

where

F (r)′
µν (r′, t) = ∂′

µA
(r)′
ν (r′, t) − ∂′

νA
(r)′
µ (r′, t), (21)

and where, by exploiting the adiabatic time evolution of
the magnetic field (5), we neglected the terms proportional
to Ω2.

By collecting (12), (13), (19) and (20) andbyperforming
the remaining trivial transformation of the mass term in
the Lagrangian density (1), it can be written in terms of
the primed variables and fields as follows:

L′(ψ′, ∂′
µψ

′, ψ̄′, A(r)′
µ , ∂′

νA
(r)′
µ , r′)

= ψ̄′(r′, t)
{
γµ
[
i∂′
µ + eA′

µ(r
′) + eA(r)′

µ (r′, t)
]

−m
}

×ψ′(r′, t)

− 1
4
F (r)′
µν (r′, t)F (r)′µν(r′, t)

+iΩψ̄′(r′, t)γ0J (1/2)′
x ψ′(r′, t)

−iΩ
∂A

(r)′
µ (r′, t)
∂t

J (1)′
x A(r)′µ(r′, t) +O(Ω2), (22)

or, by eliminating the now useless primes4, as

Leff(ψ, ∂µψ, ψ̄, A(r)
µ , ∂νA

(r)
µ , r)

= L0(ψ, ∂µψ, ψ̄, ∂νA(r)
µ , r)

+LI(ψ, ∂iψ, ψ̄, A(r)
µ , ∂νA

(r)
µ , r) (23)

with

L0(ψ, ∂µψ, ψ̄, ∂νA(r)
µ , r)

= ψ̄(r, t) {γµ [i∂µ + eAµ(r)] −m}ψ(r, t)

− 1
4
F (r)
µν (r, t)F (r)µν(r, t) (24)

and

LI(ψ, ∂iψ, ψ̄, A(r)
µ , ∂νA

(r)
µ , r)

= eψ̄(r, t)γµψ(r, t)A(r)
µ (r, t)

4 The elimination of the primes on the variables r′ can be
safely done only because, the transformation r′ = r′(r) being
a rotation, we have dr′ = dr and L =

∫
drL(ψ, ∂µψ, ψ̄, A(r)

µ ,
∂νA

(r)
µ , r) =

∫
dr′L′(ψ′, ∂′

µψ
′, ψ̄′, A(r)′

µ , ∂′
νA

(r)′
µ , r′) and then

the fact that r′ actually depends on time is irrelevant.

+iΩψ̄(r, t)γ0J (1/2)
x ψ(r, t)

−iΩ
∂A

(r)
µ (r, t)
∂t

J (1)
x A(r)µ(r, t) +O(Ω2). (25)

In this way the original time-depending Lagrangian den-
sity (1) has been transformed into an effective Lagrangian
density that does not depend explicitly on time and that
embodies the effects of the rotation of the external magnetic
field in the interaction terms proportional to the rotational
frequency Ω. We note that the Lagrangian density (23) is
just the Lagrangian density of QED in the presence of the
external static magnetic field B′ = (0, 0, B) plus other ex-
tra interaction terms that are proportional toΩ (or toΩ2).

In order to build the Hamiltonian density we calcu-
late now the momenta conjugate to the Dirac and to the
radiation field. From (23)– (25) we obtain

πψ(r, t) ≡ ∂Leff

∂(∂0ψ)

= iψ†(r, t), (26)

πA(r)(r, t) ≡ ∂Leff

∂(∂0A(r))
(27)

= ∂0A(r)(r, t) + iΩJ (1)
x A(r)(r, t),

and the Hamiltonian density can be written in the form

Heff(ψ, ∂iψ,ψ†,A(r), πA(r) , ∂iA(r), r)

≡ πψ∂0ψ + πA(r) · ∂0A(r)

−Leff(ψ, ∂µψ, ψ̄, A(r)
µ , ∂νA

(r)
µ , r)

= H0(ψ, ∂iψ,ψ†, πA(r) , ∂iA(r), r)

+HI(ψ, ∂iψ,ψ†,A(r), πA(r) , ∂iA(r)), (28)

with

H0(ψ, ∂iψ,ψ†, πA(r) , ∂iA(r), r)

= ψ†(r, t) {α · [−i∇ + eA(r)] + βm}ψ(r, t)

+
1
2

{
[πA(r)(r, t)]2 +

[
∇ × A(r)(r, t)

]2}
(29)

and

HI(ψ, ∂iψ,ψ†,A(r), πA(r) , ∂iA(r))

= −eψ†(r, t)αψ(r, t) · A(r)(r, t)

+iΩψ†(r, t)J (1/2)
x ψ(r, t)

−iΩπA(r)(r, t) · J (1)
x A(r)(r, t) +O(Ω2). (30)

Now, since the external magnetic field B(t) has been
assumed to be slowly varying in time, we can consider the
interaction Hamiltonian density (30) as a small pertur-
bation of the free Hamiltonian density (29) and, at this
point, we can use the machinery of the ordinary perturba-
tion theory to calculate the matrix elements corresponding
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to the process under study: the creation of an electron and
of a positron together with the emission of a photon by
one of the charged particles in the strong slowly rotating
magnetic field B(t). If we neglect all the radiative correc-
tions and take into account only the tree level contribu-
tions, the Feynman diagrams accounting for the process
are those shown in Fig. 1. The lower interaction vertices
represent the creation of the e−–e+ pair, while the others
represent the electromagnetic emission of a photon by the
electron [Fig. 1a] or by the positron [Fig. 1b]. It is clear
from the figure that the two processes are not disjoint in
time but that the whole process includes both the cre-
ation of the pair and the emission of the photon. Now, a
pair cannot be created in a constant and uniform magnetic
field [10] and, in fact, the interaction vertex with the exter-
nal field corresponds to the term iΩψ†(r, t)J (1/2)

x ψ(r, t) in
HI(ψ, ∂iψ,ψ†,A(r), πA(r) , ∂iA(r)) proportional to the ro-
tational frequency of the magnetic field. Also, since Ω is
assumed to be a small quantity we are allowed to con-
sider only Feynman graphs with one vertex containing the
interaction with the external field.

Now, as in ordinary QED, in order to calculate the ma-
trix element of the S-matrix corresponding to the Feynman
diagrams in Fig. 1 we quantize the Dirac field and the pho-
ton field in the interaction picture. Since, as we have said,
the Lagrangian density (24) is the free Lagrangian density
of QED in the presence of a uniform and static magnetic
field in the z direction with strength B, we already know
that the Dirac field can be expanded as [7]

ψ(r, t) =
∑
j

[
cjuj(r) exp(−iwjt) + d†

jvj(r) exp(iw̃jt)
]
,

(31)
with j ≡ {nd, k, σ, ng} embodying all the quantumnumbers
and with

��
(a) (b)

Fig. 1. Tree-level Feynman diagrams of the photon emission
by an electron a or by a positron b created in the presence of
the magnetic field B(t) given in (5). The thick fermion lines
indicate that the calculations of the corresponding S-matrix
elements have been performed by using the fermion states in
the presence of the magnetic field. The vertices representing
the interaction with the external magnetic field give a factor
iΩψ†(r, t)J (1/2)

x ψ(r, t) (proportional not to the strength of the
magnetic field but to its rotational frequency) in the compu-
tation of the transition matrix elements

wj =
√
m2 + k2 + eB(2nd + 1 + σ), (32)

w̃j =
√
m2 + k2 + eB(2ng + 1 − σ) (33)

the Landau energy levels. We are not interested here in the
exact formof all electron and positron statesuj(r) and vj(r)
that, anyway, canbe found inmany textbooks togetherwith
the physical meaning of the quantum numbers j and so
on [see e.g. [17]]. In fact, from (32) and (33) we see that if
the parameter

ρ0 =
2eB
m2 (34)

is much larger than one, there is a class of states, that
we called in [7] “transverse ground states” and that are
characterized by the quantum numbers {nd = 0, k, σ =
−1, ng} for the electron and {nd, k, σ = +1, ng = 0} for the
positron, whose energy, which is independent ofB, is much
smaller than that of the other states with different quantum
numbers. We have seen in [7] that, just for this reason, e−–
e+ pairs are much more likely created (in the presence of
a strong slowly rotating magnetic field) with the electron
and the positron in these states. For the same reason, in
the present work we assume that all the electrons and the
positrons entering the game are in transverse ground states
whose explicit expression is [7]:

un,k(r) (35)

=
√
εk +m

2εk




0
1
0

− k
εk+m


ϕn(x, y)

exp(ikz)√
Z

,

vn,k(r) (36)

=
√
εk +m

2εk




0
− k
εk+m

0
1


ϕn(x, y)

exp(−ikz)√
Z

,

with Z the length of the quantization volume in the z
direction and

ϕn(x, y) (37)

=

√
1

πn!

(
eB

2

)n+1

(x− iy)n exp
[
− eB

4
(
x2 + y2)] .

In order to simplify the notation, the transverse ground
states have been labeled only by two indices k and n (since
there is no possibility of confusion we omitted the indices
“d” and “g” on nd and ng) and their energies, that depend
only on the longitudinal momentum k, have been indicated
as εk =

√
m2 + k2.

Finally, in the strong magnetic field regime ρ0 � 1 one
is allowed with a good approximation to sum only on the
transverse ground states to build the electron propagator
G(r, t, r′, t′), that is

iG(r, t, r′, t′) (38)
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=
∑
n,k

{ϑ(t− t′)un,k(r)ūn,k(r′) exp [−iεk(t− t′)]

−ϑ(t′ − t)vn,k(r)v̄n,k(r′) exp [iεk(t− t′)]} ,
with ϑ(τ) the step function.

We pass now to the second quantization of the radi-
ation field. The presence in the interaction Lagrangian
density (25) of terms containing the time derivative of the
radiation field would make the quantization procedure very
complicated. Nevertheless, we observe that
(1) these additional terms are proportional to the rota-
tional frequency Ω;
(2) the matrix elements that we will calculate are already
proportional to Ω through the factor corresponding to the
interaction vertex with the external field in Fig. 1.

For these reasons, since we are not interested in higher
order corrections in Ω, all the other factors in the matrix
elements can be evaluated neglecting the interaction with
the external field. In this way, we can quantize the radiation
field as it was free and then we have only to expand the
vector potential A(r)(r, t) into the usual plane-wave basis
as follows:

A(r)(r, t)

=
∑
q,r

eq,r√
2V ωq

{aq,r exp[−i(ωt− q · r)]

+ a†
q,r exp[i(ωt− q · r)]} , (39)

where V is the quantization volume, ω = |q| is the pho-
ton energy and eq,r with r = 1, 2 are the polarization
vectors [18].

At this point we have all the quantities we need to
calculate the matrix elements corresponding to the Feyn-
man diagrams in Fig. 1 and this is the first subject of the
next section.

3 Calculation of the photon spectrum

By looking at the interaction Hamiltonian density HI(ψ,
∂iψ, ψ†,A(r), πA(r) , ∂iA(r)) it is clear that the if the final
state is the state |e−e+γ〉 ≡ |k0, n0; k′

0, n
′
0;q, r〉 (the initial

state is obviously the vacuum |0〉) then the matrix element
at time t > 0 corresponding to the Feynman diagram in
Fig. 1a can be written as5

Sk0,n0,k′
0,n

′
0,q,r(t)

=
∫

dr′
∫ t

−∞
dt′
∫

dr′′
∫ t

0
dt′′u†

n0,k0
(r′) exp(iεk0t

′)

× eα · eq,r√
2V ω

exp[i(ωt′ − q · r′)]iG(r′, t′, r′′, t′′)

×iΩγ0J (1/2)′′
x vn′

0,k
′
0
(r′′) exp(iεk′

0
t′′), (40)

5 The Feynman diagram in Fig. 1b represents the emission
of the photon by a positron but we can take into account this
process by simply multiplying by two the final spectrum of the
photons emitted only by an electron.

where we pointed out that, while the electromagnetic in-
teraction between the Dirac field and the radiation field is
always present, the external field starts rotating at t′′ = 0.
We also want to stress that the low vertices in Fig. 1 cor-
respond to the term iΩγ0J (1/2)

x in the expression of the
matrix elements. From this point of view, as we have said,
the magnetic field being a slowly varying quantity we are
allowed to stop the calculations up to first order in Ω and
then to consider only Feynman graphs with only one ver-
tex involving the external magnetic field. Instead, since the
magnetic field is strong it is fully taken into account in the
expression of the propagator G(r′, t′, r′′, t′′) which is built
up by electron and positron states in the presence of the
magnetic field [see (38)].

Now, the term in (40) corresponding to the lower vertex
in Fig. 1a will be calculated by means of the first order
adiabatic perturbation theory [19]. In order to do this, we
use the expression (38) of the electron propagator to write
the previous matrix element in the more useful form

Sk0,n0,k′
0,n

′
0,q,r(t)

= − e(eq,r)z√
2V ω

∑
n,k

∫ t

−∞
dt′ exp[i(εk0 + ω − εk)t′]

×
∫

dr′u†
n0,k0

(r′)αzun,k(r′) exp(−iq · r′)

×
∫ t′

0
dt′′ exp[i(εk′

0
+ εk)t′′]

×
∫

dr′′u(rot)†
n,k (r′′, t′′)

∂

∂t′′
v
(rot)
n′

0,k
′
0
(r′′, t′′)

+
e(eq,r)z√

2V ω

∑
n,k

∫ t

−∞
dt′ exp[i(εk0 + ω + εk)t′]

×
∫

dr′u†
n0,k0

(r′)αzvn,k(r′) exp(−iq · r′)

×
∫ t

t′
dt′′ exp[i(εk′

0
− εk)t′′]

×
∫

dr′′v(rot)†
n,k (r′′, t′′)

∂

∂t′′
v
(rot)
n′

0,k
′
0
(r′′, t′′), (41)

where we used the fact that as the transverse ground
states (35) and (36) are eigenstates of σz, αx and αy can-
not couple two of them, and where we introduced the “ro-
tated” states

u
(rot)
n,k (r, t) ≡ exp

(
−iJ (1/2)

x Ωt
)
un,k(r), (42)

v
(rot)
n,k (r, t) ≡ exp

(
−iJ (1/2)

x Ωt
)
vn,k(r). (43)

These states are the instantaneous eigenstates at time t of
the one-particle Hamiltonian

H(rot)(r,−i∇, t) = α · [−i∇ + eA(r, t)] + βm, (44)
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with A(r, t) given in (6). In this way, by applying the first
order adiabatic perturbation theory [19] we have∫

dr′′u(rot)†
n,k (r′′, t′′)

∂

∂t′′
v
(rot)
n′

0,k
′
0
(r′′, t′′)

= − 1
εk + εk′

0

∫
dr′′u(rot)†

n,k (r′′, t′′) (45)

× ∂

∂t′′
[
H(rot)(r′′,−i∇′′, t′′)

]
v
(rot)
n′

0,k
′
0
(r′′, t′′),∫

dr′′v(rot)†
n,k (r′′, t′′)

∂

∂t′′
v
(rot)
n′

0,k
′
0
(r′′, t′′)

= − 1
εk′

0
− εk

∫
dr′′v(rot)†

n,k (r′′, t′′) (46)

× ∂

∂t′′
[
H(rot)(r′′,−i∇′′, t′′)

]
v
(rot)
n′

0,k
′
0
(r′′, t′′).

These kinds of matrix elements have been calculated
in [7]. In particular, by using (47), (48) and (56) of that
paper we obtain∫

dr′′u(rot)†
n,k (r′′, t′′)

∂

∂t′′
v
(rot)
n′

0,k
′
0
(r′′, t′′) (47)

= − 1
εk + εk′

0

∫
dr′′u†

n,k(r
′′)
eΩB

2
x′′αzvn′

0,k
′
0
(r′′),

∫
dr′′v(rot)†

n,k (r′′, t′′)
∂

∂t′′
v
(rot)
n′

0,k
′
0
(r′′, t′′) (48)

= − 1
εk′

0
− εk

∫
dr′′v†

n,k(r
′′)
eΩB

2
x′′αzvn′

0,k
′
0
(r′′).

We observe that in both these matrix elements the integrals
on the z variable give a conservation of the longitudinal
momentum and then of the energy. This does not cause
any problem in the first matrix element, while the second
one diverges when k = k′

0. For this reason, this particular
matrix element will be calculated by writing the left-hand
side of (48) as [see (42) and (43)]∫

dr′′u(rot)†
n,k′

0
(r′′, t′′)

∂

∂t′′
v
(rot)
n′

0,k
′
0
(r′′, t′′)

= −iΩ
∫

dr′′u†
n,k′

0
(r′′)J (1/2)′′

x vn′
0,k

′
0
(r′′). (49)

By substituting the explicit expression of the one-particle
electron total angular momentum (17), we observe that
on the one hand the term iz′′∂/∂y′′ does not contribute
because, by performing the integral on z′′ from −Z/2 to
Z/2, it vanishes and on the other hand neither the term
σx/2 does contribute because the transverse ground states
are eigenstates of σz. As a result, we have∫

dr′′v(rot)†
n,k′

0
(r′′, t′′)

∂

∂t′′
v
(rot)
n′

0,k
′
0
(r′′, t′′)

= −Ω
∫

dr′′v†
n,k′

0
(r′′)y′′ ∂

∂z′′ vn′
0,k

′
0
(r′′). (50)

At this point, if we substitute the expressions (35) and (36)
of the transverse ground states we obtain the result that
the matrix elements different from zero are∫

dr′′u(rot)†
n′

0−1,−k′
0
(r′′, t′′)

∂

∂t′′
v
(rot)
n′

0,k
′
0
(r′′, t′′)

=
mΩ

4ε2k′
0

√
eBn′

0

2
, (51)

∫
dr′′u(rot)†

n′
0+1,−k′

0
(r′′, t′′)

∂

∂t′′
v
(rot)
n′

0,k
′
0
(r′′, t′′)

=
mΩ

4ε2k′
0

√
eB(n′

0 + 1)
2

, (52)

∫
dr′′v(rot)†

n′
0−1,k′

0
(r′′, t′′)

∂

∂t′′
v
(rot)
n′

0,k
′
0
(r′′, t′′)

= k′
0Ω

√
n′

0

2eB
, (53)∫

dr′′v(rot)†
n′

0+1,k′
0
(r′′, t′′)

∂

∂t′′
v
(rot)
n′

0,k
′
0
(r′′, t′′)

= −k′
0Ω

√
n′

0 + 1
2eB

, (54)

where we used the usual expressions of the operators cor-
responding to the transverse coordinates in terms of the
lowering and raising operators related to the quantum num-
bers nd and ng [20]:

x′′ =
1
2

√
2
eB

(
ag + a†

g + ad + a†
d

)
, (55)

y′′ =
1
2i

√
2
eB

(
ag − a†

g − ad + a†
d

)
. (56)

In this respect, we recall that while the index n stands
for ng in labelling the electron states, it stands for nd in
labelling the positron states.

By inserting the previous matrix elements in (41) and
by performing the remaining space-time integrals we obtain
the two transition amplitudes6

S
(1)
k,n,k′,n′,q,r(t)

=
eΩ(eq,r)z

4

√
(εk +m)(εk′ +m)n′

εkεk′eωBV
In,n′−1,qx,qyδk+qz+k′,0

×
{[

eBm

8ε3k′

(
k

εk +m
− k′

εk′ +m

)
1

εk + εk′ + ω

+
k′

(εk + εk′ + ω)2

(
1 +

k

εk +m

k′

εk′ +m

)]

× exp[i(εk + εk′ + ω)t] (57)

− eBm

8ε3k′

(
k

εk +m
− k′

εk′ +m

)
exp[i(εk − εk′ + ω)t]

εk − εk′ + ω

}
6 For notational simplicity, we omitted the now useless index

“0” on k0 and k′
0.
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and

S
(2)
k,n,k′,n′,q,r(t)

=
eΩ(eq,r)z

4

√
(εk +m)(εk′ +m)(n′ + 1)

εkεk′eωBV

×In,n′+1,qx,qy
δk+qz+k′,0

×
{[

eBm

8ε3k′

(
k

εk +m
− k′

εk′ +m

)
1

εk + εk′ + ω

− k′

(εk + εk′ + ω)2

(
1 +

k

εk +m

k′

εk′ +m

)]

× exp[i(εk + εk′ + ω)t] (58)

− eBm

8ε3k′

(
k

εk +m
− k′

εk′ +m

)
exp[i(εk − εk′ + ω)t]

εk − εk′ + ω

}
.

with

In,n′,qx,qy
=
∫

dxdyϕ∗
n(x, y)ϕn′(x, y) exp[−i(qxx+ qyy)].

(59)
It is worth giving the explicit result of the time integrals
in (41):

∫ t

−∞
dt′ exp[i(εk + ω − εk′)t′]

∫ t′

0
dt′′ exp(2iεk′t′′)

=
1

2iεk′

{
exp[i(εk + εk′ + ω + is)t]

i(εk + εk′ + ω + is)

− exp[i(εk − εk′ + ω + is)t]
i(εk − εk′ + ω + is)

}
(60)

and∫ t

−∞
dt′ exp[i(εk + ω + εk′)t′]

∫ t

t′
dt′′

= exp[i(εk + εk′ + ω)t]
∫ ∞

0
dτ τ exp[−i(εk + εk′ + ω)τ ]

= − exp[i(εk + εk′ + ω − is)t]
(εk + εk′ + ω − is)2

. (61)

The is terms with s → 0+ have been added in order to
make the integrals convergent. Now, it is obvious that εk+
εk′ +ω > 0. Also, because of the overall conservation of the
longitudinal momentum k+qz+k′ = 0, unless we have the
trivial case q = 0 it can be shown that εk − εk′ + ω > 0,
and all the is terms can be safely eliminated in the final
results in (60) and (61).

The probability that a photon is emitted at time t
with momentum between q and q + dq by an electron or
by a positron is obtained by integrating on the quantum
numbers of the electron and by multiplying by two:

dP (q; t)

= 2
V dq
(2π)3

Z

2π

∫
dk

Z

2π

∫
dk′ (62)

×
2∑
r=1

∞∑
n,n′=0

[∣∣S(1)
n,n′,r(k, k

′,q; t)
∣∣2 +

∣∣S(2)
n,n′,r(k, k

′,q; t)
∣∣2]

where the limit of large Z and V is understood and all
the momenta are intended from now on to be continuous
variables. As usual, we are interested in macroscopic times
t such that mt � 1 [7]; then we can neglect the oscillating
terms coming from the square modulus of S(1)

n,n′,r(k, k
′,q; t)

and S(2)
n,n′,r(k, k

′,q; t):

dP (q; t → ∞)

∼ Zdq
(2π)4

eΩ2

8ωB

2∑
r=1

∣∣[er(q)]z
∣∣2

×
∞∑

n,n′=0

[
n′|In,n′−1(qx, qy)|2 + (n′ + 1)|In,n′+1(qx, qy)|2

]

×
∫

dk
[ε(k) +m][ε(k′) +m]

ε(k)ε(k′)

×
{[

eBm

8ε3(k′)

]2 [
k

ε(k) +m
− k′

ε(k′) +m

]2

×
[

1
[ε(k) + ε(k′) + ω]2

+
1

[ε(k) − ε(k′) + ω]2

]

+
k′2

[ε(k) + ε(k′) + ω]4

×
[
1 +

k

ε(k) +m

k′

ε(k′) +m

]2}
k′=−k−qz

, (63)

where we exploited the longitudinal momentum conserva-
tion to perform the integration on k′.

We will now calculate separately the sums on the vari-
ables r, n and n′. The sum on r is quite trivial and in many
textbooks one can find that [18]

2∑
r=1

∣∣[er(q)]z
∣∣2 = 1 − q2z

ω2 =
q2⊥
ω2 , (64)

where obviously q2⊥ = q2x + q2y. Concerning the sums on n
and n′, we will calculate them together with the integrals
In,n′±1(qx, qy). In fact, we have

∞∑
n,n′=0

[
n′|In,n′−1(qx, qy)|2 + (n′ + 1)|In,n′+1(qx, qy)|2

]

=
∞∑

n,n′=0

(2n′ + 1)|In,n′(qx, qy)|2. (65)

Now, from (59) and (37) we can write In,n′(qx, qy) as

In,n′(qx, qy)

=
1

π
√
n!n′!

∫
dξdη (ξ + iη)n (ξ − iη)n

′
(66)
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× exp
[− (ξ2 + η2)] exp

[
−i

√
2
eB

(qxξ + qyη)

]
,

where the change of variable

ξ =

√
eB

2
x, (67)

η =

√
eB

2
y (68)

has been performed. With this expression we can calculate
explicitly the sums on n and n′; in fact

∞∑
n,n′=0

(2n′ + 1)|In,n′(qx, qy)|2

=
1
π2

∫
dξdηdξ′dη′ exp

[− (ξ2 + η2 + ξ′2 + η′2)]

× exp

{
i

√
2
eB

[qx(ξ′ − ξ) + qy(η′ − η)]

}

×
∞∑

n,n′=0

2n′ + 1
n!n′!

(ξ + iη)n (ξ − iη)n
′

× (ξ′ − iη′)n (ξ′ + iη′)n
′

=
1
π2

∫
dξdηdξ′dη′ exp

[
− (ξ′ − ξ)2 − (η′ − η)2

]

× exp

{
i

√
2
eB

[qx(ξ′ − ξ) + qy (η′ − η)]

}

× [2 (ξ − iη) (ξ′ + iη′) + 1] . (69)

If we now put

ξ± =
ξ′ ± ξ√

2
, (70)

η± =
η′ ± η√

2
(71)

we have
∞∑

n,n′=0

(2n′ + 1)|In,n′(qx, qy)|2

=
1
π2

∫
dξ+dξ−dη+dη− exp

[−2
(
ξ2− + η2

−
)]

× exp
[
i

2√
eB

(qxξ− + qyη−)
]

(72)

× {[ξ+ − ξ− − i(η+ − η−)][ξ+ + ξ− + i(η+ + η−)] + 1} .
As we have pointed out in our previous paper [7], the
presence of the external non-uniform electric field E(r, t) =
−∂A(r, t)/∂t [see (6)] breaks the translational symmetry in
the plane perpendicular to the magnetic field and makes the

production probabilities larger and larger in the regions far
from the origin. This can also be seen here by observing that
the time derivative of the one-particle Hamiltonian (44)
in (45) and (46) is proportional to E(r, t). The consequence
is that the integrals on the variables ξ+ and η+ in (72) would
be diverging. For this reason we will retain in (72) only the
dominant terms, that is

∞∑
n,n′=0

(2n′ + 1)|In,n′(qx, qy)|2

∼ 1
π2

∫
dξ−dη− exp

[−2
(
ξ2− + η2

−
)]

(73)

× exp
[
i

2√
eB

(qxξ− + qyη−)
] ∫

dη+dξ+
(
ξ2+ + η2

+
)
.

Now, by passing to polar coordinates in the ξ+–η+ plane
we easily obtain [see (67) and (68), and (70) and (71)]

∫
dη+dξ+

(
ξ2+ + η2

+
)

=
π
2

(√
eB

2
R⊥M

)4

, (74)

whereR⊥M is the radius of the integration cylinder already
introduced in [7] and whose physical meaning will be ex-
plained below.7 Instead, the integrals on the variables ξ−
and η− are well-known exponential integrals and we only
quote the final result:

∞∑
n,n′=0

(2n′ + 1)|In,n′(qx, qy)|2

∼ 1
4

(
eB

2

)2

R4
⊥M exp

(
− q2⊥

2eB

)
. (75)

By substituting (64) and (75) in (63)we obtain the following
expression of the probability dP (q; t → ∞):

dP (q; t → ∞) ∼ eBΩ2α

(8π)3
q2⊥dq
ω3 ZR4

⊥M exp
(

− q2⊥
2eB

)

×
∫

dk
[ε(k) +m][ε(k′) +m]

ε(k)ε(k′)

×
{[

eBm

8ε3(k′)

]2 [
k

ε(k) +m
− k′

ε(k′) +m

]2

×
[

1
[ε(k) + ε(k′) + ω]2

+
1

[ε(k) − ε(k′) + ω]2

]

+
k′2

[ε(k) + ε(k′) + ω]4

×
[
1 +

k

ε(k) +m

k′

ε(k′) +m

]2}
k′=−k−qz

, (76)

wherewe introduced the fine structure constantα=e2/(4π).
7 We will see there why performing the limit R⊥M → ∞

would be conceptually wrong.
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Fig. 2. Photon spectrum dN(ω; t → ∞)/(dV dω) in
arbitrary units. The parameter ρ0 appearing in (77)
has been set equal to 10 corresponding to a magnetic
field strength B = 2.2 × 1014 G. The dotted curve
represents a function proportional to ω−3

Finally, the photon spectrum per unit volume V =
ZπR2

⊥M is obtainedbypassing to photonmomentumspher-
ical coordinates {ω, ϑ, ϕ} and integrating on the angular
variables. Only the integral on the variable ϕ is trivial;
then by putting u = cosϑ we obtain

dN(ω; t → ∞)
dV dω

∼ ρ0mαω

(4π)3

(
ΩR⊥M

2

)2 ∫ 1

−1
du(1 − u2)

× exp
[
− ω2

m2ρ0
(1 − u2)

]

×
∫ ∞

0
dλ

[1 + ε(λ)][1 + ε(λ′)]
ε(λ)ε(λ′)

×
{( ρ0

16

)2 1
ε6(λ′)

[
λ

1 + ε(λ)
− λ′

1 + ε(λ′)

]2

×
[

1
[ε(λ) + ε(λ′) + ω/m]2

+
1

[ε(λ) − ε(λ′) + ω/m]2

]

+
λ′2

[ε(λ) + ε(λ′) + ω/m]4
(77)

×
[
1 +

λ

1 + ε(λ)
λ′

1 + ε(λ′)

]2 }
λ′=−λ−uω/m

,

where we introduced the non-dimensional quantities λ =
k/m and ε(λ) =

√
1 + λ2 and where ρ0 is defined in (34).

The presence of the quantityR⊥M in this final result forces
us to understand better its physical meaning. Firstly, as
we have anticipated below (72), its appearance also in
the energy spectrum per unit volume (77) is due to the
presence of the non-uniform electric field induced by the
time variation of B(t). Now, following the derivation itself
of (77) and recalling what we have said in the Introduction,
R⊥M can be interpreted as the typical extension of the

spatial region within which the magnetic field produced
by the astrophysical compact object can be assumed to be
uniform. As a consequence the physical assumption about
the uniformity of the magnetic field gives an upper limit
to the allowed values of R⊥M . Also, it can be shown that
another limit on R⊥M comes from the fact that we applied
the first order adiabatic perturbation theory to calculate
the spectrum (77). A too large value of the quantityΩR⊥M
would make in turn the transition matrix elements (40) too
large, and in such a way the first order treatment (in Ω)
would be insufficient.

Now, the integrals in (77) cannot be performed an-
alytically; we resort to a numerical integration. Figure 2
shows the photon spectrum (77) in arbitrary units and
with ρ0 = 10 corresponding to a magnetic field strength
B = 2.2 × 1014 G which is typical in the astrophysical
scenario sketched in the Introduction where the fireballs
giving rise to gamma-ray bursts are supposed to be pro-
duced. Even if, as we have said, the present model is too
much simplified to exhaustively describe that physical en-
vironment, the spectrum in Fig. 2 has some features qual-
itatively similar to the corresponding ones of gamma-ray
bursts. In fact, the spectrum shows two different behaviors
below and above the “break” energy ωb ∼ 1–3 MeV8. Now,
the experimental break energies are typically just below
1 MeV, but there are also cases of gamma-ray bursts with
ω

(exp)
b > 1 MeV [21, 22]. On the other hand, the experi-

mental spectra of gamma-ray bursts are very well fitted
by a function proportional to ω−1 in the low energy region
and by a function proportional to ω−β with β ∼ 2–3 in
the high energy region [16]. In our case, we see from the
figure that the high energy part of the spectrum decreases
more rapidly than ω−3. This can be due to the fact that, as
we have already pointed out in [8], the production of high
energy e−–e+ pairs due to a slowly rotating magnetic field
is disfavored and this makes the production of high energy

8 We have checked numerically that the value of ωb depends
on the parameter ρ0 and also on the strength of the magnetic
field (in particular, the lower is ρ0 the lower is ωb).
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photons less efficient. Instead, concerning the low energy
region of the spectrum, we want to conclude by showing
analytically that the spectrum (77) goes just as ω−1 in the
limit ω/m � 1. In fact, all the terms in the integrals on
u and λ that are finite if calculated at ω/m = 0 give a
linear dependence of the spectrum on the photon energy
because of the presence of the overall factor proportional to
ω in (77). These terms as a result are found to be negligible
with respect to the term

dN(ω; t → ∞)
dV dω

ω/m�1∼ mαω

4
(ΩR⊥M )2

( ρ0

16π

)3
∫ 1

−1
du(1 − u2) (78)

×
∫ ∞

0
dλ

λ2

(1 + λ2)4
1

[ε(λ) − ε(λ+ uω/m) + ω/m]2
,

which is the only one in (77) which diverges in the low
energy limit. Now, we will manipulate only the diverging
factor [ε(λ)−ε(λ+uω/m)+ω/m]−2 bywriting it in the form

1
[ε(λ) − ε(λ+ uω/m) + ω/m]2

�
(m
ω

)2 1 + λ2

[ε(λ) − λu]2
. (79)

By substituting this expression in (78) we finally have

dN(ω; t → ∞)
dV dω

ω/m�1∼ α

4ω
(ΩR⊥M )2

( ρ0m

16π

)3
(80)

×
∫ 1

−1
du(1 − u2)

∫ ∞

0
dλ

λ2

(1 + λ2)3
1

[ε(λ) − λu]2
,

which is the desired result. In fact, since ε(λ)−λu > 0 in the
integration domain, the two integrals are finite and then

dN(ω; t → ∞)
dV dω

ω/m�1∝ ω−1. (81)

4 Conclusions

In this paper we have studied the electrodynamic process
in which a photon is emitted together with an e−–e+ pair
in the presence of a strong slowly rotating magnetic field.
In particular we have calculated the spectrum of the pho-
tons emitted by means of this process. We started from
the Lagrangian density of QED in the presence of the ex-
ternal rotating magnetic field to build an effective time-
independent Lagrangian density that takes into account
the rotation of the magnetic field through the presence of
interaction terms proportional to the rotational frequency
Ω of the field. This form as a result was found to be par-
ticularly suitable for our scope, because the astrophysical
scenario we imagine to apply to our calculations allowed

us to assume the magnetic field to be slowly rotating and
then to consider Ω as a small quantity with respect to the
microscopic frequency scale m and to the photon frequen-
cies entering the game. In this way, we had the possibility
to use the ordinary perturbation theory to calculate the
transition matrix elements corresponding to the process
under study. As we have seen in Sect. 2, at tree level the
process involved second order transition matrix elements in
order to account for the creation of the electrons (positrons)
and for the photon emission by the electrons (positrons)
themselves. As a consequence, the final spectrum (77) was
proportional to the fine structure constant α and to the
square of the rotational frequency Ω of the external mag-
netic field.

The strength of the magnetic field has been assumed
to be much larger than Bcr = m2/e, and this condition
is satisfied only in certain astrophysical systems such as
magnetars or massive black holes. From this point of view,
the study of the possible electrodynamic processes that can
happen in such strong magnetic fields can be submitted
to experimental checks. Obviously, these astrophysical en-
vironments are actually much more complicated than our
theoretical model. Nevertheless, we pointed out that our
simple toy model reproduces some qualitative features of
the experimental spectra of gamma-ray bursts that are sup-
posed to be originating around massive black holes. Firstly,
we have seen a change in the dependence on the photon
energy in correspondence with a “break” energy ωb. The
value of ωb depends on the magnetic field strength, and
it is significant that a realistic value of the magnetic field
strength ∼ 1014 G corresponds to the equally experimen-
tal correct values ωb ∼ 1–3 MeV. Most important, we have
also shown analytically that the spectrum we obtained has
a linear dependence on the inverse of the photon energy in
the low energy region exactly as the spectra of gamma-ray
bursts. Instead, we have pointed out that in the region with
ω > ωb the theoretical spectrum decreases more rapidly
than the experimental spectra and that this can be due
to the fact that in our model the production of high en-
ergy e−–e+ pairs (and then of high energy photons) is not
very efficient.
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